Аксиоматика теории множеств

 Современная теория множеств строится на системе аксиом — утверждений, принимаемых без доказательства, — из которых выводятся все теоремы и утверждения теории множеств. Система аксиом является стандартной системой аксиом для теории множеств. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора.

  Значение математической логики в нашем и прошлом столетии сильно возросло. Главной причиной этого явилось открытие парадоксов теории множеств и необходимость пересмотра противоречивой интуитивной теории мно­жеств. Было предложено много различных аксиоматических теорий для обоснова­ния теории множеств, но как бы они не отличались друг от друга своими внешними чертами, общее для всех них содержание состав­ляют те фунда­ментальные теоремы, на которые в своей повседневной работе опираются математики. Выбор той или иной из имеющихся тео­рий является в основном делом вкуса; мы же не предъявляем к системе, которой будем пользоваться, никаких требований, кроме того, чтобы она служила достаточной основой для построения современной математики.

   Опишем теорию первого порядка NBG, которая в основном явля­ется системой того же типа, что и система, предложенная перво­начально фон Нейманом (1925), (1928), а затем тщательно пере­смотренная и упрощенная Р. Робинсоном (1937), Бернайсом (1937—1954) и Гёделем (1940). (Будем в основном следовать монографии Гёделя, хотя и с некоторыми важными от­клонениями.) Теория NBG имеет единственную предикатную букву и не имеет ни одной функциональной буквы или предметной константы. Чтобы быть ближе к обозначениям Бернайса (1937—1954) и Гёделя (1940), мы бу­дем употреблять в качестве переменных вместо x1, x2, … прописные латин­ские буквы X1, Х2, ... (Как обычно, мы используем буквы X, Y, Z, ... для обо­значения произвольных переменных.) Мы вве­дем также сокращенные обо­значения ХY для(X, Y) и XY для (X, Y). Содержательно знак пони­мается как символ отношения принадлежности.
  Следующим образом определим равенство:
  Определение. Х=Y служит сокращением для формулы .
  Таким образом, два объекта равны тогда и только тогда, когда они со­стоят из одних и тех же элементов.
  Определение. служит сокращением для формулы (включение).
  Определение. XY служит сокращением для Х Y & X ≠ Y (соб­ствен­ное включение).
  Из этих определений легко следует
Предложение 1.
(а) Х = Y (X Y & Y X);
(b) Х = Х;
(с) Х = Y Y = Х;
(d) Х = Y (Y = Z Х = Z);
(е) Х = Y (ZX ZY).
  Теперь приступим к перечислению собственных аксиом теории NBG, перемежая формулировки самих аксиом различными следствиями из них и некоторыми дополнительными определениями. Предварительно, од­нако, отметим, что в той «интерпретации», которая здесь подразумевается, значениями переменных являются классы. Классы — это совокупности, со­ответствующие некоторым, однако отнюдь не всем, свойствам (те свойства, которые фактически определяют классы, будут частично указаны в аксиомах. Эти аксиомы обеспечивают нам существование необхо­ди­мых в математике классов и являются, достаточно скром­ными, чтобы из них нельзя было вы­вести противоречие). (Эта «ин­терпретация» столь же неточна, как и понятия «совокупность», «свойство» и т. д.)
  Назовем класс множеством, если он является элементом какого-ни­будь класса. Класс, не являющийся множеством, назовем собственным клас­сом.
  Определение. M(X) служит сокращением для Y(XY) (X есть множе­ство).
  Определение. Pr(X) служит сокращением для M(X) (X есть собствен­ный класс).
 В дальнейшем увидим, что обычные способы вывода парадоксов приводят теперь уже не к противоречию, а всего лишь к результату, состоя­щему в том, что некоторые классы не являются множествами.  Множества предназначены быть теми надежными, удобными классами, которыми мате­матики пользуются в своей повседневной деятельности; в то время как соб­ственные классы мыслятся как чудовищно необъят­ные собрания, которые, если позволить им быть множествами (т. е. быть элементами других классов), порождают противоречия.
  Система NBG задумана как теория, трактующая о классах, а не о пред­метах. Мотивом в пользу этого послужило то обстоятельство, что мате­матика не нуждается в объектах, не являющихся классами, вроде коров или молекул. Все математические объекты и отношения могут быть выражены в терминах одних только классов. Если же ради приложений в других науках возникает необходимость привлечения «неклассов», то незначительная мо­дификация системы NBG позволяет при­ме­нить ее равным образом как к классам, так и к «неклассам» (Мостовский [1939]).
  Мы введем строчные латинские буквы x1, x2, … в качестве специаль­ных, ограниченных множествами, переменных. Иными словами, x1 A (x1) бу­дет служить сокращением для X (M(X)A (X)) , что содержательно имеет следующий смысл: «A истинно для всех множества, и x1 A (x1) будет служить сокращением для X (M(X)A (X)), что содержательно имеет смысл: «A истинно для некоторого множества». Заметим, что упот­ребленная в этом определении переменная X должна быть отлич­ной от пе­ременных, входящих в A (x1). (Как и обычно, буквы х, y, z, ... будут употреб­ляться для обозначения произвольных переменных для множеств.)
П р и м е р. Выражение ХхyZA (X, х, y, Z) служит сокра­щением для
ХXj (М(Xj)Y(M(Y)&ZA (X, Xj, Y, Z))).

Х = Y (XZYZ).
Предложение 2. Система NBG является теорией первого порядка с равенством.

xyzu (u z u = xu = y), т. е. для любых множеств х и у существует множество z такое, что х и у явля­ются единственными его элементами.

х y (у х), т. е. су­ществует множество, не содержащее никаких элементов.
  Из аксиомы N и аксиомы объемности следует, что существует лишь единственное множество, не содержащее никаких элементов, т. е. 1x y (у х). Поэтому мы можем ввести предметную константу 0, подчи­няв ее следующему условию.
  Определение. y (y 0).
 Так как выполнено условие единственности для неупорядоченной пары, то можем ввести новую функциональную букву g(х, y) для обозна­чения неупорядоченной пары х и у. Впрочем вместо g(х, y) мы будем писать {х, у}. Заметим, что можно однозначно определить пару {X, Y} для любых двух классов Х и Y, а не только для мно­жеств х и у. Положим {X, Y} = 0, если один из классов X, Y не яв­ляется множеством. Можно доказать, что
NBG 1Z((M(X)&M(Y)&u (u Z u = X u = Y))  (( M(X) M(Y))&Z=0)).
  Этим оправдано введение пары {X, Y}:
  Определение. (М(Х) & М(Y) & u (и {X, Y} u = X u = Y))
(( M(X) M(Y)) & {X, Y} = 0).
  Можно до­казать, что NBG x y u (u {х, у} u = x u = y) и NBG x y (M({х, у})).
  Определение. = {{Х}, {X, Y}}. называется упорядоченной па­рой классов Х и Y.
  Никакого внутреннего интуитивного смысла это определение не имеет. Оно является лишь некоторым удобным способом (его предложил Ку-ратовский) определить упорядоченные пары таким образом, чтобы можно было доказать следующее предложение, выражающее характеристическое свойство упорядоченных пар.
  Предложение 3.
NBG x y u v ().
  Доказательство. Пусть = . Это значит, что {{x}, {x, y}} = {{u}, {u, v}}. Так как {х} {{x}, {x, y}}, то {x} {{u}, {u, v}}. Поэтому {x} = ={u} или {х} = {u, v}. В обоих случаях х = и. С другой стороны, {u, v} {{u}, {u, v}} и, следовательно, {u, v} {{x}, {x, y}}. Отсюда {u, v} = {x} или {u, v} = ={x, y}. Подобным же образом {x, y} = {u} или {х, у}={и, v}. Если или {u, v} = ={x} и {х, y} = {u}, то х = и = у = v, в про­тивном случае {и, v} = {х, у} и, сле­довательно, {и, v} = {u, у}. Если при этом v ≠ u, то y = v, если же v = u, то тоже y = v. Итак, в любом случае, y = v.
  Oбобщим понятие упорядоченной пары до понятия упо­ря­доченной n-ки.
 Определение
= Х,
Так, например, и
  В дальнейшем индекс NBG в записи NBG опускается.
  Нетрудно дока­зать следующее обобщение предложения 3.

  Эти аксиомы утвер­ждают, что для некоторых свойств, выраженных формулами, сущест­вуют соответствующие классы всех множеств, обладаю­щих этими свойствами.
А к с и о м а В1. X u v (X u v) (- отношение).
А к с и о м а В2. X Y Z u (u Z u X & u Y)
(пересечение).
А к с и о м а В3. X Z u (u Z u X) (дополнение).
А к с и о м а В4. X Z u (u Z v (X)) (область
определения).
А к с и о м а В5. X Z u v ( Z u X).
А к с и о м а В6. X Z u v w ( Z X).
А к с и о м а В7. X Z u v w ( Z X).
  С помощью аксиом В2—В4 можно доказать
X Y 1Z u (u Z u X & u Y),
X 1Zu (u Z u x),
X 1Zu (u Z v ( X)).
  Эти результаты оправдывают введение новых функциональных букв ∩, −, D.
  Определения
u (u X ∩ Y u X & u Y) (пересечение классов Х и Y).
u (u u X) (дополнение к классу X).
u (u D (X) v ( X)) (об­ласть определения класса X).
(объединение классов Х и Y).
V = (универсальный класс).
X − Y = X ∩
  Общая теорема о существовании классов.
  Предложение 4. Пусть φ (X1,…,Xn, Y1,…, Ym) – формула, перемен­ные которой берутся лишь из числа X1,…,Xn, Y1,…, Ym . Назовём такую фор­мулу предикативной, если в ней связными являются только переменные для множеств (т.е. если она может быть приведена к такому виду с помощью принятых сокращений). Для всякой предикативной формулы φ (X1,…,Xn, Y1,…, Ym)
Zx1 …xn ( Z φ (x1,…,xn, Y1,…, Ym)).
  Доказательство. Мы можем ограничиться рассмотрением только та­ких формул φ, которые не содержат подформул вида Yi W, так как всякая та­кая подформула может быть заменена на x (x = Yi & x W), что в свою оче­редь эквивалентно формуле x (z (z x z Yi) & x W). Можно также предполагать, что в φ не содержатся подфор­мулы вида XX, которые могут быть заменены на u (u = X & u X), последнее же эквивалентно u (z (z u z X) & u X). Доказа­тельство проведем теперь индук­цией по числу k логических связок и кванторов, входящих в формулу φ (за­писанную с ограниченными пере­менными для множеств).
1. Пусть k = 0. Формула φ имеет вид xi xj, или xj xi, или xi Yi, где 1 ≤ i < j ≤ n. В первом случае, по аксиоме В1, сущест­вует некоторый класс W1 такой, что
xixj (W1 xi xj).
  Во втором случае, по той же аксиоме, существует класс W2 такой, что
xixj (W2 xj xi),
и тогда, в силу
XZ u v ( Z X),
существует класс W3 такой, что
xixj (W3 xj xi).
  Итак, в любом из первых двух случаев существует класс W3 такой, что
xixj (W φ (x1,…,xn, Y1,…, Ym)).
Тогда, заменив в
XZ v1…vkuw ( Z X)
X на W, получим, что существует некоторый класс Z1 такой, что
x1… xi-1xixj (Z1 φ (x1,…,xn, Y1,…, Ym)).
Далее, на основании
XZ v1…vmx1…xn (
ZX)
там же при Z1 = X, заключаем, что существует класс Z2 такой, что
x1 … xi xi+1 … xj ( Z2 φ (x1,…,xn, Y1,…, Ym)).
  Наконец, применяя
XZ v1…vmx1…xn ( Z X)
(1)
там же при Z2 = Х, получаем, что существует класс Z такой, что
x1…xn ( Z φ (x1,…,xn, Y1,…, Ym)).
Для остающегося случая xi Yi теорема следует из (1) и
XZ x v1…vm ( Z x X).
  2. Предположим, что теорема доказана для любого k < s и что φ со­держит s логических связок и кванторов.
(a) φ есть ψ. По индуктивному предположению, существует класс W такой, что
x1…xn ( W ψ (x1,…,xn, Y1,…, Ym)).
  Теперь остается положить Z = .
(b) φ есть ψ θ. По индуктивному предположению, существуют классы Z1 и Z2 такие, что
x1…xn ( Z1 ψ (x1,…,xn, Y1,…, Ym)) и
x1…xn ( Z2 θ (x1,…,xn, Y1,…, Ym)).
Искомым классом Z в этом случае будет класс .
(c) φ есть x ψ. По индуктивному предположению, существует класс W такой, что
x1…xnx ( W ψ (x1,…, xn, x, Y1,…, Ym)).
  Применим сперва
XZ x1 … xn ( Z y ( X)).
при X = и получим класс Z1 такой, что
x1 … xn ( Z1x ψ (x1,…, xn, x, Y1,…, Ym)).
 Теперь положим окончательно Z = , замечая, что x ψ эквивалентно x ψ.
 Примеры. 1. Пусть φ (X, Y1, Y2) есть формула uv (X = & u Y1 & v Y2). Здесь кванторы связывают только перемен­ные для множеств. Поэтому, в силу теоремы о существовании классов, Z x (x Z uv (x = & u Y1 & v Y2)), а на основании аксиомы объемности, 1Z x (x Z uv (x = & u Y1 & v Y2)). Поэтому возможно следующее определение, вводящее новую функциональную букву :
Определение. x (x Y1 Y2 uv (x = & u Y1 & v Y2)). (Декартово произведение классов Y1 и Y2).
Определения. X2 обозначает X X (в частности, V2 обозначает класс всех упо­рядоченных пар).
Xn обозначает Xn-1 X (в частности, Vn обозначает класс всех упо­рядоченных n-ок).
Rel(X) служит сокращением для Х V2 (X есть отношение).
  2. Пусть φ (X, Y) обозначает Х Y. По теореме о существовании классов и на основании аксиомы объемности, 1Zx (x Z x Y). Таким образом, существует класс Z, элементами которого являются все подмножества класса Y.
Определение. x (x P (Y) x Y). (P (Y): класс всех под­множеств класса Y.)
  3. Рассмотрим в качестве φ (X, Y) формулу v (X v & v Y).
По теореме о существовании классов и на основании аксиомы объем­ности, 1Zx (x Z v (x v & v Y)), т.е. существует един­ственный класс Z, элементами которого являются все элементы элемен­тов класса Y и только они.
Определение. x (x (Y) v (x v & v Y)). ((Y): объединение всех элементов класса Y)
  4. Пусть φ (X) есть u (X = ). По теореме о существовании классов и на основании аксиомы объемности, существует единственный класс Z такой, что x (x Z u (x = )).
Определение. x (x I u (x = )). (Отношение тож­дества.)
Следствие. Для всякой предикативной формулы φ (X1,…,Xn, Y1,… …, Ym)
1W( W Vn & x1…xn ( W
φ (x1,…,xn, Y1,…, Ym)).
  Доказательство. В силу предложения 4, существует класс Z, для которого x1…xn ( Z φ (x1,…,xn, Y1,…, Ym)). Очевидно, искомым классом W является класс W = Z ∩ Vn; его един­ственность вытекает из аксиомы объемности.
  Определение. Для всякой предикативной формулы φ (X1,…,Xn, Y1,… …, Ym) через φ (x1,…,xn, Y1,…, Ym)) обозначается класс всех n-ок , удовлетворяющих формуле φ (x1,…,xn, Y1,…, Ym)), т. е. u (u φ (x1,…,xn, Y1,…, Ym) x1…xn (u = & φ (x1,…,xn, Y1,… …, Ym))). Следствие оправдывает такое определение. В частности, при n = 1 получим u (u φ (x, Y1, …, Ym) φ (u, Y1,…, Ym)) (иногда вместо φ (x1,…,xn, Y1,…, Ym) применяют запись {| φ (x1,…,xn, Y1,…, Ym)}).
  Примеры. 1. Пусть φ есть Y. Обозначим ( Y) сокращенно через , тогда V2 & x1x2( Y Y). Назовем обратным отношением класса Y.
  2. Пусть φ есть v ( Y). Обозначим через R(Y) выражение (v ( Y)). Тогда u (u R(Y) v ( Y)). Класс R(Y) называется областью значений класса Y. Очевидно, R(Y) = D().
  Заметим, что аксиомы В1 — В7 являются частными случаями теоремы о существовании классов, т. е. предложения 4. Иными словами, вместо того, чтобы выдвигать предложение 4 в качестве схемы аксиом, можно с тем же результатом ограничиться лишь некоторым конечным числом его частных случаев. Вместе с тем, хотя предложение 4 и позволяет доказывать существование большого числа самых разнообразных клас­сов, нам, однако, ничего еще не известно о существовании каких-либо множеств, кроме самых простых множеств таких, как 0, {0}, {0, {0}}, {{0}} и т. д. Чтобы обеспечить существование множеств более сложной структуры, введем дальнейшие аксиомы.

xyu (u y v (u v & v x)).
  Эта аксиома утверждает, что объединение (х) всех элементов мно­жества х является также множеством, т. е. x (M((х))). Множество и (х) обозначают также через и v.
  Средством порождения новых множеств из уже имеющихся является образование множества всех подмножеств данного множества.

xyu (u y u x).
  Эта аксиома утверждает, что класс всех подмножеств множества х есть также множество; его будем назы­вать множеством всех подмножеств множества х. В силу этой аксиомы, x (M(P (х))).
Примеры.
P (0) = {0}.
P ({0}) = {0, {0}}.
P ({0, {0}}) = {0, {0}, {0, {0}}, {{0}}}.
  Значительно более общим средством построения новых множеств является следующая ак­сиома выделения.

xY zu (u z u x & u Y).
  Таким образом, для любого множества х и для любого класса Y су­ществует множество, со­стоящее из элементов, общих для х и Y. Следо­вательно, xY (M (x ∩ Y)), т. е. пересече­ние множества с классом есть множество.
  Предложение 5. xY (Y x M (Y)) (т. е. подкласс множе­ства есть множество).
  Доказательство. x (Y x Y ∩ x = Y) и x (M (Y ∩ x)).
  Так как всякая предикативная формула A(у) порождает соответ­ст­вующий класс (предло­жение 4), то из аксиомы S следует, что для любого множества х класс всех его элементов, удовлетворяющих дан­ной предика­тивной формуле A(у), есть множество.
  Однако для полного развития теории множеств потребуется ак­сиома, более сильная, чем аксиома S. Введем предварительно несколько оп­ределений.
  Определения Un (X) означает xyz ( X & X y = z).
(X однозначен.)
Fnc (X) означает X V2 & Un (X). (X есть функция.)
Y 1 X означает X ∩ (Y V). (Огра­ничение Х областью Y.)
Un1 (X) означает Un (X) & Un (). (X взаимно однозначен.)
X‘Y
  Если существует единственное z такое, что X, то z = X‘y; в про­тивном случае X‘y = 0. Если Х есть функция, а у — множество из области определения X, то X‘y есть значе­ние этой функции, примененной к у (В дальнейшем будем по мере необходимости вводить новые функ­циональные буквы и предметные константы, как только будет ясно, что соот­ветствующее определение может быть обосновано теоремой о единственности. В настоящем случае происходит введение неко­торой новой функциональной буквы h с сокращенным обозначением Х‘Y вместо h (X, Y)).
  X‘‘Y = R(Y 1 X). (Если Х есть функция, то X‘‘Y есть об­ласть значений класса X, ограниченного областью Y.)

{\slider}{slider=- Аксиома замещения.}

x (Un (X) yu (u y v ( X & v X))).
  Аксиома замещения утверждает, что если класс Х однозначен, то класс вторых компонент тех пар из X, первые компоненты которых принадлежать, является множеством (эквивалент­ное утверждение: M(R (x 1X))) Из этой аксиомы следует, что если Х есть функция, то об­ласть значений результата ограничения Х посредством всякой области, являющейся множест­вом, также есть множество.
Следующая аксиома обеспечивает существование бесконечных мно­жеств.

x (0 x & u (u x u {u} x)).
  Аксиома бесконечности утверждает, что существует такое множество х, что 0 x, и если и x, то и {и} также принадлежит х. Для такого множества х, очевидно, {0} x, {0, {0}} x, {0, {0}, {0, {0}}} x и т. д. Если теперь положим 1 = {0}, 2 = {0, 1}, … , n = {0, 1, … , n – 1}, то для любого целого п ≥ 0 будет выполнено п х, и при этом 0 ≠ 1, 0 ≠ 2, 1 ≠ 2, 0 ≠ 3, 1 ≠ ≠ 3, 2 ≠ 3, …
  Список аксиом теории NBG завершен. Видно, что NBG имеет лишь конечное число аксиом, а именно: аксиому Т (объемности), акси­ому Р (пары), аксиому N (пустого множества), аксиому S (выделения), аксиому U (объединения), аксиому W (множества всех подмножеств), аксиому R (замещения), аксиому I (бесконечности) и семь аксиом суще­ствования классов В1—В7.
  Убедимся теперь в том, что парадокс Рассела невыводим в NBG. Пусть Y = (x x) ,т. е. х (х Y х х). (Такой класс Y суще­ствует, в силу теоремы о существовании классов (предложение 4), так как формула х х предикативна.) В первоначальной, т. е. не сокра­щенной, символике эта последняя формула записывается так: X (M(X) (X Y X X)). Допустим M(Y). Тогда Y Y Y Y, что, в силу тавтологии (A A) A & & A, влечет Y Y Y Y. Отсюда по теореме дедукции получаем M(Y)(Y Y Y Y), а затем, в силу тавтологии (B (A & A)) B , получаем и М(Y). Таким образом, рассуждения, с помощью которых обычно выводится парадокс Рассела, в теории NBG приводят всего лишь к тому результату, что Y есть собственный класс, т. е. не множество. Здесь имеем дело с типичным для теории NBG способом избавления от обычных пара­доксов (например, парадоксов Кантора и Бурали-Форти).
Определения X Irr Y означает y (y Y X) & Rel (X).
(X есть иррефлексивное отношение на Y.)
X Tr Y означает Rel (X) & uvw (uY & vY & wY &
& X &X & X X).
(X есть транзитивное отношение на Y.)
X Part Y означает (X Irr Y) & (X Tr Y).
(X частично упорядочивает Y.)
X Con Y означает Rel(X) & uv (uY & vY & u ≠ v
X X).
X Tot Y означает (X Irr Y) & (X Tr Y) & (X Con Y).
(X упорядочивает Y.)
X We Y служит обозначением для Rel(X) & (X Irr Y) & Z (ZY &
& Z ≠ 0 y (y Z & v (v Z & v ≠ y X &
& X))).
(X вполне упорядочивает Y, т. е. отношение Х иррефлексивно на Y, и всякий непустой подкласс класса Y имеет наименьший в смысле отношения Х элемент.)

  Аксиома выбора является одним из самых знаменитых и наиболее оспариваемых утверждений теории множеств.
  Следующие формулы эквивалентны:
  Аксиома выбора (АС): Для любого множества х существует функция f такая, что для всякого непустого подмножества у множества х f‘ y y (такая функция называется выбирающей функцией для х).
  Мультипликативная аксиома (Mult): Для любого мно­жества х непустых и попарно непересекающихся множеств, сущест­вует множество у (называемое выбирающим множеством для х), которое содержит в точности по одному элементу из каждого множества, являющегося элементом х.
u (u x u ≠ 0 & v (v x & v ≠ u v ∩ u = 0))
yu (u x 1w (w u ∩ y)).
  Принцип в полне упорядочения (W. O.): Всякое мно­жество может быть вполне упорядочено. x y (y We x).
  Трихотомия (Trich): xy (x y y x).
 Лемма Цорна (Zorn): Если в частично упорядоченном мно­жестве х всякая цепь (т. е. всякое упорядоченное подмножество) имеет верхнюю грань, то в х существует максимальный элемент.
xy ((y Part x) & u (u x & y Tot u v (v x &w (w u w =
= v y))) v (v x &w (w x y))).
  Доказательство.
  1. (W. O.) Trich. Пусть даны множества х и у. Согласно (W. O.), х и у могут быть вполне упорядочены. Поэтому существуют такие порядковые числа α и β, что х α и y β. Но так как α β или β α, то либо x y, либо y x.
2. Trich (W. O.). Пусть дано множество х. Согласно теореме Хартогса, существует такое порядковое число α, которое не равномощно никакому подмножеству множества х. Тогда, в силу Trich, х равномощно некоторому подмножеству у порядкового числа α, и вполне упо­рядочение Еу множества у порождает некоторое вполне упорядочение множества х.
3. (W. O.) Mult. Пусть х есть некоторое множество непустых, попарно непересекающихся множеств. Согласно (W. O.), существует отношение R, вполне упорядочивающее множество (х). Следовательно, существует такая определенная на х функция f, что f‘u для любого и х есть наименьший относительно R элемент и. (Заметим, что и (х).)
4. Mult AC. Для любого множества х существует функция g такая, что если и есть непустое подмножество х, то g‘и = u {и}. Пусть х1 —область значении функции g. Легко видеть, что х1 является множеством непустых попарно непересекающихся множеств. На основа­нии Mult, для х1 существует выбирающее множество у. Отсюда, если 0 ≠ u и u х, то и {и} х1 и у содержит и притом единственный элемент из и {и}. Функция f‘ u = v является искомой выбираю­щей функцией для х.
5. АС Zorn. Пусть у частично упорядочивает непустое мно­жество х таким образом, что всякая y-цепь в х имеет в х верхнюю грань. На основании АС, для х существует выбирающая функция f. Рассмотрим произвольный элемент b множества х, и по трансфинитной индукции определим функцию F такую, чтобы выпол­нялось F‘0 = b и F‘α = f‘u для любого α, где u есть множество всех таких верхних граней v множества F‘‘ α относительно упорядочения у, что v х и v F‘‘ α. Пусть β есть наименьшее порядковое число, которому соответствует пустое множество верхних граней v мно­жества F‘‘ β относительно упорядочения v, принадлежащих x и не при­надлежащих F‘‘ β. (Порядковые числа, обладающие таким свойством, существуют; в противном случае функция F была бы взаимно однознач­ной с областью определения Оп и с некоторым подмножеством мно­жества х в качестве области значений, откуда по аксиоме замещения R следовало бы, что Оп есть множество.) Пусть g = β 1 F. Функция g взаимно однозначна и что если α

Нравится

Тридцатая школа